Role of TRIB3 in Diabetic and Overnutrition-Induced Atherosclerosis
نویسنده
چکیده
Obesity caused by excess feeding (overnutrition) has become a problem of epidemic proportions and is the underlying cause in metabolic disorders and chronic diseases such as diabetes and cardiovascular disease. Overnutrition is associated with systemic and tissue-related insulin resistance, an abnormality that promotes vascular disease as well as the development of diabetes (1,2). Thus, there is considerable interest in factors that link overnutrition, insulin resistance, and hyperglycemia with vascular disease. There is emerging evidence that the expression of the Tribbles homolog 3 of Drosophila (TRIB3) gene is increased in patients and animals with type 2 diabetes (3). The TRIB3 gene is located on the 20p13 region of the human chromosome. Its full-length translated mRNA is 1,074 base pairs, and its protein product is made up of 358 amino acids. Studies have shown that TRIB3 inhibits insulin metabolic signaling in liver (4–6), skeletal muscle (7), and vascular tissue (8). Further, these studies suggest that TRIB3 expression in skeletal muscle and liver tissue is increased with excessive nutrient intake as well as by hyperglycemia (3–7). Endoplasmic reticulum stress has also been shown to increase TRIB3 gene expression, and TRIB3 promotes cell death in response to endoplasmic reticulum stress (9) (Fig. 1). Several studies have shown that TRIB3 impairs insulin metabolic signaling by increasing serine phosphorylation of insulin receptor 1 (IRS-1), reducing tyrosine phosphorylation of this docking protein and activation of phosphatidylinositol 3-kinase and downstream protein kinase B (Akt) phosphorylation/activation (10,11) (Fig. 1). TRIB3 has also been reported to bind to and directly inhibit Akt phosphorylation/activation and to interfere with FoxO1 regulation of Akt activation (4–7). Reduced insulin-stimulated Akt activation is explained by reduced stimulation of phosphorylation at both Thr and Ser residues, which appear to be due to increased physical interaction of TRIB3 with the pleckstrin homology domain of Akt. These observations suggest that TRIB3 acts as a nutrient sensor that mediates cell stress responses under conditions of excessive nutrient intake, insulin resistance, and/or hyperglycemia (12–19). In the current issue of Diabetes, Wang et al. (20) have evaluated the role of TRIB3 in the development of atherosclerosis and plaque stability in young (3-week-old) ApoE/LDLR mice that were made diabetic by a combination of high-fat and high-sugar diet and low-dose streptozotocin treatment. The strategy used to evaluate the role of TRIB3 was to silence the TRIB3 gene via intravenous adenoviral gene delivery of TRIB3 siRNA. At age 20 weeks, the dietand streptozotocin-induced diabetic mice displayed insulin resistance, hyperglycemia, increased aortic TRIB3 gene expression, and increased macrophage migration, adhesion, and phagocytosis. The increase in gene expression of TRIB3 is consistent with prior observations that TRIB3 is upregulated in skeletal muscle from patients with type 2 diabetes, db/db mice, and Zucker fatty rats (7). Further, diabetic mice displayed more aortic, carotid, and brachiocephalic atherosclerotic plaques and increased intimal medial thickness. Knockdown of TRIB3 increased Akt phosphorylation, reduced blood glucose, increased liver glycogen content, and decreased abnormal macrophage activity as well as the number and fragility of atherosclerotic lesions (20). In this regard, TRIB3 was previously observed to be upregulated in atherosclerotic unstable plaques (19). There are several mechanisms by which increased TRIB3 may promote atherosclerotic lesions. For example, it has been reported that a TRIB3 gain of function variant is associated with impaired insulin-mediated nitric oxide (NO) production in human endothelial cells (8). Insulin normally increases endothelial NO synthase (eNOS) activity via IRS-1/ Akt signaling (2). Insulin, via Akt activation, normally stimulates Ser phosphorylation, resulting in an increased flux through the reductase domain and, consequently, enhanced eNOS activity (8). In contrast, eNOS Thr constitutive phosphorylation downregulates eNOS activity. Overexpression of TRIB3 impairs insulin modulation of eNOS Ser phosphorylation and Thr dephosphorylation, thus decreasing insulin’s ability to activate eNOS (8). As previously discussed, TRIB3 may inhibit this metabolic signaling pathway through increased serine phosphorylation of IRS-1 or by directly inhibiting phosphorylation/ activation of Akt (2,4–7) (Fig. 1). Decreased bioavailable NO and endothelial dysfunction, which is common in insulin-resistant states, obesity, and diabetes, is an important early step in atherosclerotic development (2,8). For example, reduced bioavailable NO is associated with increased leukocyte adhesion to endothelial cells (Fig. 1), an important early step in atheroma formation (2,8). As reviewed in the current article (20), TRIB3 is upregulated by oxidized LDL, and upregulated TRIB3, in turn, promotes increased macrophage migration, adhesion, and apoptosis, which promote the formation of unstable plaque lesions. In this regard, the diabetic animals in this study demonstrated vulnerable plaques with relatively thin fibrous caps and larger lipid cores; this abnormality was From the Department of Internal Medicine, University of Missouri School of Medicine, Columbia, Missouri; the Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri; the Diabetes and Cardiovascular Laboratory, University of Missouri School of Medicine, Columbia, Missouri; and the Harry S. Truman Veterans Affairs Medical Center, Columbia, Missouri. Corresponding author: James R. Sowers, [email protected]. DOI: 10.2337/db11-1495 2012 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by -nc-nd/3.0/ for details. See accompanying original article, p. 463.
منابع مشابه
Silence of TRIB3 Suppresses Atherosclerosis and Stabilizes Plaques in Diabetic ApoE−/−/LDL Receptor−/− Mice
Insulin resistance triggers the developments of diabetes mellitus and atherosclerosis. Tribbles homolog 3 (TRIB3) is involved in insulin resistance. We aimed to investigate whether TRIB3 is implicated in diabetic atherosclerosis. Sixty 3-week-old apolipoprotein E (ApoE-/-)/LDR receptor (LDLR-/-) mice were randomly divided into chow and diabetes groups. Diabetes was induced by a high-fat and hig...
متن کاملVitamin D3 Induces Gene Expression of Ox-LDL Scavenger Receptors in Streptozotocin-Induced Diabetic Rat Aortas: New Insight into the Role of Vitamin D in Diabetic Atherosclerosis
Background: Several lines of evidence suggest that oxidized LDL (Ox-LDL) scavenger receptors play a crucial role in the genesis and progression of diabetic atherosclerosis. This study aimed to elucidate the effect of vitamin D3 on gene expression of lectin-like oxidized LDL receptor-1 (LOX-1), scavenger receptor-A (SR-A), Cluster of Differentiation 36 (CD36), and Cluster of Differentiation 68 (...
متن کاملSkeletal Muscle TRIB3 Mediates Glucose Toxicity in Diabetes and High- Fat Diet–Induced Insulin Resistance
In the current study, we used muscle-specific TRIB3 overexpressing (MOE) and knockout (MKO) mice to determine whether TRIB3 mediates glucose-induced insulin resistance in diabetes and whether alterations in TRIB3 expression as a function of nutrient availability have a regulatory role in metabolism. In streptozotocin diabetic mice, TRIB3 MOE exacerbated, whereas MKO prevented, glucose-induced i...
متن کاملRelation of plasma somatostatin levels with malondialdehyde in hyperlipidemic patients.
Somatostatin (SST) may protect organism from overnutrition-induced insulin resistance and oxidative stress by inhibiting pancreatic endocrine and exocrine secretion, gastrointestinal digestion and absorption. Many studies clearly show its release becomes perturbed in diabetes and obesity. Therefore, in the present study we first aimed to investigate whether or not plasma somatostatin level was ...
متن کاملMammalian Tribbles homolog 3 impairs insulin action in skeletal muscle: role in glucose-induced insulin resistance.
Tribbles homolog 3 (TRIB3) was found to inhibit insulin-stimulated Akt phosphorylation and modulate gluconeogenesis in rodent liver. Currently, we examined a role for TRIB3 in skeletal muscle insulin resistance. Ten insulin-sensitive, ten insulin-resistant, and ten untreated type 2 diabetic (T2DM) patients were metabolically characterized by hyperinsulinemic euglycemic glucose clamps, and biops...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 61 شماره
صفحات -
تاریخ انتشار 2012